ISSN: 1309 - 3843 E-ISSN: 1307 - 7384
FİZİKSEL TIP VE REHABİLİTASYON
BİLİMLERİ DERGİSİ
www.jpmrs.com
Kayıtlı İndexler


ORIJINAL ARAŞTIRMA

Tek Taraflı Serebral Palsili Çocuklarda Kas Mimarisi ile Fonksiyonel Motor Becerileri Arasındaki İlişki
Relationship in Children with Unilateral Cerebral Palsy Between Muscle Architecture and Functional Motor Skills
Received Date : 24 Jan 2024
Accepted Date : 07 Jun 2024
Available Online : 13 Jun 2024
Doi: 10.31609/jpmrs.2024-101632 - Makale Dili: EN
Turkiye Klinikleri Journal of Physical Medicine and Rehabilitation Sciences. 2024;27(3):175-84.
ÖZET
Amaç: Bu çalışmanın amacı, unilateral serebral palsili [unilateral cerebral palsy (UCP)] çocuklarda kas mimari özelliklerindeki farklılıkları ve bunların fonksiyonel motor becerilerle ilişkisini araştırmaktır. Gereç ve Yöntemler: Bu çalışmaya 36 UCP’li ve 36 sağlıklı çocuk dâhil edildi. Bacak kas mimarileri ultrasonografi ile değerlendirildi. Fonksiyonel motor beceriler; Zamanlı Kalk ve Yürü Testi, 5 Tekrarlı Otur Kalk Testi [5 Times Sit and Stand Test (5xSST)], 10 Metre Yürüme Testi, Kaba Motor Fonksiyon Ölçütü’nün [Gross Motor Function Measure-88 (GMFM-88)] D ve E alt grupları ve Pediatrik Berg Denge Ölçeği [Pediatric Berg Balance Scale (PBS)] ile değerlendirildi. Bulgular: UCP’li bireylerde etkilenen ekstremitenin mediyal gastroknemius [medial gastrocnemius (Gm)], lateral gastroknemius [lateral gastrocnemius (Gl)], tibialis anterior (Ta) ve tibialis posterior kaslarının kalınlıkları etkilenmeyen ekstremiteye göre daha inceydi (p=0.004, p=0.02, p<0.001, p<0.001; sırasıyla). Etkilenmiş ekstremitenin soleus kası hariç diğer kaslarının fasikül uzunlukları etkilenmemiş ekstremiteye göre daha kısaydı (p<0.05). 5xSST ile Gm ve Gl kas kalınlığı arasında (sırasıyla; r=-0.38, p=0.04; r=-0.33, p=0.02); PBS ile Gm kası pennasyon açısı ve sol kas fasikül uzunluğu arasında; (sırasıyla; r=-0.37, p=0.03; r=-0.37, p=0.03) ve GMFM-88-E ile Ta kası pennasyon açısı arasında zayıf-orta korelasyon vardı (r=0.34, p=0.04). Sonuç: UCP’li çocukların etkilenen tarafının kas mimari özellikleri etkilenmeyen taraftan ve sağlıklı taraftan farklıydı. Bu farklılıklar UCP’li çocukların fonksiyonel beceri düzeylerini etkilemiştir.
ABSTRACT
Objective: This study aim was to investigate differences in muscle architectural characteristics in children with unilateral cerebral palsy (UCP) and their relationship with functional motor skills. Material and Methods: This study enrolled thirty-six children with UCP and thirty-six healthy controls. Leg muscle architecture was evaluated with ultrasound. Functional motor skills were assessed via the Timed Up and Go Test, the 5 Times Sit and Stand Test (5xSST), the 10m Walk Test, the Dimensions D and E of Gross Motor Function Measure-88 (GMFM-88), and the Pediatric Berg Balance Scale (PBS). Results: The thickness of the medial gastrocnemius (Gm), lateral gastrocnemius (Gl), tibialis anterior (Ta), and tibialis posterior muscles were smaller in the affected extremity than the unaffected extremity in UCP (p=0.004, p=0.02, p<0.001, p<0.001; respectively). Except for the soleus (Sol) muscle, the fascicle lengths of the other muscles of the affected extremity were shorter than those of the unaffected extremity (p<0.05). There were significant weak-moderate correlations between 5xSST and Gm and Gl muscles thickness (respectively; r=-0.38, p=0.04; r=-0.33, p=0.02), between PBS and Gm muscle pennation angle and Sol muscle fascicle length (respectively; r=-0.37, p=0.03; r=- 0.37, p=0.03). Additionally, a correlation was observed between GMFM-88-E and Ta muscle pennation angle (r=0.34, p=0.04). Conclusion: The muscle architectural characteristics of the affected side of children with UCP was different from those of the unaffected side and from those of healthy controls. These differences affected the functional skill levels of children with UCP.
REFERENCES
  1. Gulati S, Sondhi V. Cerebral Palsy: An Overview. Indian J Pediatr. 2018;85:1006-16. [Crossref]  [PubMed] 
  2. Chen Y, He L, Xu K, et al. Comparison of calf muscle architecture between Asian children with spastic cerebral palsy and typically developing peers. PLoS One. 2018;13:e0190642. [Crossref]  [PubMed]  [PMC] 
  3. Modlesky CM, Zhang C. Muscle size, composition, and architecture in cerebral palsy. Cereb Palsy. 2019;1-16. [Crossref] 
  4. Barber L, Hastings-Ison T, Baker R, et al. Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5 years with cerebral palsy. Dev Med Child Neurol. 2011;53:543-8. [Crossref]  [PubMed] 
  5. Legerlotz K, Smith HK, Hing WA. Variation and reliability of ultrasonographic quantification of the architecture of the medial gastrocnemius muscle in young children. Clin Physiol Funct Imaging. 2010;30:198-205. [Crossref]  [PubMed] 
  6. Lieber RL, Fridén J. Clinical significance of skeletal muscle architecture. Clin Orthop Relat Res. 2001:140-51. [Crossref]  [PubMed] 
  7. Bénard MR, Harlaar J, Becher JG, et al. Effects of growth on geometry of gastrocnemius muscle in children: a three-dimensional ultrasound analysis. J Anat. 2011;219:388-402. [Crossref]  [PubMed]  [PMC] 
  8. Blazevich AJ, Sharp NC. Understanding muscle architectural adaptation: macro- and micro-level research. Cells Tissues Organs. 2005;181:1-10. [Crossref]  [PubMed] 
  9. Lee HJ, Lee KW, Takeshi K, et al. Correlation analysis between lower limb muscle architectures and cycling power via ultrasonography. Sci Rep. 2021;11:5362. [Crossref]  [PubMed]  [PMC] 
  10. Barrett RS, Lichtwark GA. Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Dev Med Child Neurol. 2010;52:794-804. [Crossref]  [PubMed] 
  11. Shortland AP, Harris CA, Gough M, et al. Architecture of the medial gastrocnemius in children with spastic diplegia. Dev Med Child Neurol. 2001;43:796-801. Erratum in: Dev Med Child Neurol 2002;44:135. Corrected and republished in: Dev Med Child Neurol. 2002;44:158-63. [Crossref]  [PubMed] 
  12. Williams SA, Stott NS, Valentine J, et al. Measuring skeletal muscle morphology and architecture with imaging modalities in children with cerebral palsy: a scoping review. Dev Med Child Neurol. 2021;63:263-73. [Crossref]  [PubMed] 
  13. Carey H, Martin K, Combs-Miller S, et al. Reliability and responsiveness of the timed up and go test in children with cerebral palsy. Pediatr Phys Ther. 2016;28:401-8. [Crossref]  [PubMed] 
  14. Kumban W, Amatachaya S, Emasithi A, et al. Five-times-sit-to-stand test in children with cerebral palsy: reliability and concurrent validity. NeuroRehabilitation. 2013;32:9-15. [Crossref]  [PubMed] 
  15. Watson MJ. Refining the ten-metre walking test for use with neurologically ımpaired people. Physiotherapy. 2002;88:386-97. [Crossref] 
  16. Wang HY, Yang YH. Evaluating the responsiveness of 2 versions of the gross motor function measure for children with cerebral palsy. Arch Phys Med Rehabil. 2006;87:51-6. [Crossref]  [PubMed] 
  17. Franjoine MR, Gunther JS, Taylor MJ. Pediatric balance scale: a modified version of the berg balance scale for the school-age child with mild to moderate motor impairment. Pediatr Phys Ther. 2003;15:114-28. [Crossref]  [PubMed] 
  18. Erden A, Acar Arslan E, Dündar B, et al. Reliability and validity of Turkish version of pediatric balance scale. Acta Neurol Belg. 2021;121:669-75. [Crossref]  [PubMed] 
  19. Johnson AW, Bruening DA, Violette VA, et al. Ultrasound imaging is reliable for tibialis posterior size measurements. J Ultrasound Med. 2020;39:2305-12. [Crossref]  [PubMed] 
  20. Kawano A, Yanagizono T, Kadouchi I, et al. Ultrasonographic evaluation of changes in the muscle architecture of the gastrocnemius with botulinum toxin treatment for lower extremity spasticity in children with cerebral palsy. J Orthop Sci. 2018;23:389-93. [Crossref]  [PubMed] 
  21. Reid SL, Pitcher CA, Williams SA, et al. Does muscle size matter? The relationship between muscle size and strength in children with cerebral palsy. Disabil Rehabil. 2015;37:579-84. [Crossref]  [PubMed] 
  22. Park KB, Joo SY, Park H, et al. Architecture of the Triceps Surae Muscles Complex in Patients with Spastic Hemiplegia: Implication for the Limited Utility of the Silfverskiöld Test. J Clin Med. 2019;8:2096. [Crossref]  [PubMed]  [PMC] 
  23. Maurits NM, Beenakker EA, van Schaik DE, et al. Muscle ultrasound in children: normal values and application to neuromuscular disorders. Ultrasound Med Biol. 2004;30:1017-27. [Crossref]  [PubMed] 
  24. Bahar-Özdemir Y, Ünal-Ulutatar Ç, Karali-Bingül D, et al. Efficacy of foot-ankle orthosis on balance for children with hemiplegic cerebral palsy: An observational study. Turk J Phys Med Rehabil. 2021;67:336-43. [Crossref]  [PubMed]  [PMC] 
  25. Barber L, Hastings-Ison T, Baker R, et al. The effects of botulinum toxin injection frequency on calf muscle growth in young children with spastic cerebral palsy: a 12-month prospective study. J Child Orthop. 2013;7:425-33. [Crossref]  [PubMed]  [PMC] 
  26. Malaiya R, McNee AE, Fry NR, et al. The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol. 2007;17:657-63. [Crossref]  [PubMed] 
  27. Kruse A, Schranz C, Tilp M, et al. Muscle and tendon morphology alterations in children and adolescents with mild forms of spastic cerebral palsy. BMC Pediatr. 2018;18:156. Erratum in: BMC Pediatr. 2018;18:273. [Crossref]  [PubMed]  [PMC] 
  28. Mohagheghi AA, Khan T, Meadows TH, et al. Differences in gastrocnemius muscle architecture between the paretic and non-paretic legs in children with hemiplegic cerebral palsy. Clin Biomech (Bristol, Avon). 2007;22:718-24. [Crossref]  [PubMed] 
  29. Bland DC, Prosser LA, Bellini LA, et al. Tibialis anterior architecture, strength, and gait in individuals with cerebral palsy. Muscle Nerve. 2011;44:509-17. [Crossref]  [PubMed]  [PMC]