ISSN: 1309 - 3843 E-ISSN: 1307 - 7384
FİZİKSEL TIP VE REHABİLİTASYON
BİLİMLERİ DERGİSİ
www.jpmrs.com
Kayıtlı İndexler


ORIJINAL ARAŞTIRMA

Spinal Kord Yaralanmalı Bireylerde Spastisite ile Kemik Mineral Yoğunluğu ve Yağsız Vücut Kitlesi Arasındaki İlişki
The Relationship Between Spasticity and Bone Mineral Density and Lean Body Mass in İndividuals with Spinal Cord Injury
Received Date : 07 Jun 2022
Accepted Date : 29 Aug 2022
Available Online : 07 Sep 2022
Doi: 10.31609/jpmrs.2022-91778 - Makale Dili: TR
J PMR Sci. 2023;26(2):140-6
ÖZET
Amaç: Spinal kord yaralanması (SKY) olan bireylerde, spastisitesi olan üst motor nöron lezyonlu hastalar ile kauda ekuina sendromu olan alt motor nöron lezyonlu hastalar arasında kemik mineral yoğunluğu ve yağsız vücut kitlesini karşılaştırmak amaçlanmıştır. Gereç ve Yöntemler: Ocak 2019-Ekim 2021 arasında, kemik mineral yoğunluğu ve yağsız vücut kitlesi ölçümü yapılmış olan 68 SKY’li hasta kaydedildi. Hastalar üst motor nöron lezyonu olan SKY’li hastalar (Grup 1, n=43) ve alt motor nöron lezyonu olan hastalar (Grup 2, kauda ekuina sendromlu, n=25) olarak 2 gruba ayrıldı. Dual enerji X-ray absorbsiyometri ile saptanan kemik mineral yoğunluğu ve yağsız vücut kitle ölçümleri 2 grup arasında karşılaştırıldı. Kemik mineral yoğunluğu total kalça, femur boyun, distal femur ve proksimal tibia bölgelerinden ve yağsız vücut kitle tayini tüm vücut, kollar ve bacaklardan yapıldı. Bulgular: Yaş, cinsiyet, Beden Kitle İndeksi, yaralanma süresi ve vitamin D düzeyi parametreleri açısından her iki grup benzerdi. Tüm kemik mineral yoğunluğu ölçümleri 2 grup arasında istatistiksel olarak anlamlı farklılık göstermedi. Bacak yağsız vücut kitlesi Grup 1’de 6902,23±1489,47 g ve Grup 2’de 5920,63±1989,69 g idi (p=0,029). Sonuç: Üst motor nöron lezyonu olan SKY’li bireyler ile kauda ekuina sendromu olan bireylerin kemik mineral yoğunluğu arasında farklılık saptanmadı. Ancak üst motor nöron lezyonlu bireyler kauda ekuina sendromlu bireylere göre daha büyük bacak yağsız vücut kitlesine sahipti. Bu sonuçlar spastisitenin alt ekstremitede yağsız vücut kitlesi için koruyucu rol oynadığını, ancak kemik mineral yoğunluğu için böyle bir etkisinin olmadığını düşündürmektedir.
ABSTRACT
Objective: To compare bone mineral density and lean body mass between patients with upper motor neuron lesions with spasticity and lower motor neuron lesions with cauda equina syndrome in individuals with spinal cord injury (SCI). Material and Methods: Sixty-eight patients with SCI, whose bone mineral density and lean body mass were measured between January 2019 and October 2021, were enrolled. The patients were divided into 2 groups as SCI with upper motor neuron lesion (Group 1, n=43) and lower motor neuron lesion (Group 2, cauda equina syndrome, n=25). Bone mineral density and lean body mass measured by dual energy X-ray absorbsiometry were compared between the 2 groups. Bone mineral density was determined from the total hip, femoral neck, distal femur and proximal tibia regions. Lean body mass was examined from the whole body, arms and legs. Results: Both groups were similar in terms of age, gender, body mass index, duration of injury, and vitamin D levels. All bone mineral density measurements did not differ statistically between the 2 groups. Leg lean body mass was 6902.23±1489.47 g in Group 1 and 5920.63±1989.69 g in Group 2 (p=0.029). Conclusion: No difference was found between the bone mineral density of individuals with SCI with upper motor neuron lesion and individuals with cauda equina syndrome. However, patients with upper motor neuron lesions had greater leg lean body mass than patients with cauda equina syndrome. These results suggested that spasticity played a protective role for lean body mass in the lower extremities, but not for bone mineral density.
REFERENCES
  1. Gorgey AS, Chiodo AE, Zemper ED, et al. Relationship of spasticity to soft tissue body composition and the metabolic profile in persons with chronic motor complete spinal cord injury. J Spinal Cord Med. 2010;33:6-15. [Crossref]  [PubMed]  [PMC] 
  2. Frotzler A, Krebs J, Göhring A, et al. Osteoporosis in the lower extremities in chronic spinal cord injury. Spinal Cord. 2020;58:441-8. [Crossref]  [PubMed] 
  3. Lance JW. The control of muscle tone, reflexes, and movement: Robert Wartenberg Lecture. Neurology. 1980;30:1303-13. [Crossref]  [PubMed] 
  4. Finnerup NB. Neuropathic pain and spasticity: intricate consequences of spinal cord injury. Spinal Cord. 2017;55:1046-50. [Crossref]  [PubMed] 
  5. Engin O, El Ö. Spinal kord yaralanmalı hastanın değerlendirilmesi [Assessment of the patients with spinal cord injury]. TOTBİD Dergisi. 2018;17:545-53. [Crossref] 
  6. Holtz KA, Lipson R, Noonan VK, et al. Prevalence and effect of problematic spasticity after traumatic spinal cord injury. Arch Phys Med Rehabil. 2017;98:1132-8. [Crossref]  [PubMed] 
  7. Skoog B, Jakobsson KE. Prevalence of spasticity and below-level neuropathic pain related to spinal cord ınjury level and damage to the lower spinal segments. J Rehabil Med Clin Commun. 2020;3:1000039. [Crossref]  [PubMed]  [PMC] 
  8. Stampas A, Hook M, Korupolu R, et al. Evidence of treating spasticity before it develops: a systematic review of spasticity outcomes in acute spinal cord injury interventional trials. Ther Adv Neurol Disord. 2022;15:17562864211070657. [Crossref]  [PubMed]  [PMC] 
  9. Batra A, Jindal R, Goenka S, et al. Spasticity and bone mineral density after spinal cord injury. International Journal of Health and Clinical Research. 2020;3:206-11. [Link] 
  10. Roy RR, Edgerton VR. Neurobiological perspective of spasticity as occurs after a spinal cord injury. Exp Neurol. 2012;235(1):116-22. [Crossref]  [PubMed] 
  11. Löfvenmark I, Werhagen L, Norrbrink C. Spasticity and bone density after a spinal cord injury. J Rehabil Med. 2009;41:1080-4. [Crossref]  [PubMed] 
  12. Demirel G, Yilmaz H, Paker N, et al. Osteoporosis after spinal cord injury. Spinal Cord. 1998;36:822-5. [Crossref]  [PubMed] 
  13. Eser P, Frotzler A, Zehnder Y, et al. Assessment of anthropometric, systemic, and lifestyle factors influencing bone status in the legs of spinal cord injured individuals. Osteoporos Int. 2005;16:26-34. [Crossref]  [PubMed] 
  14. Jung IY, Kim HR, Chun SM, et al. Severe spasticity in lower extremities is associated with reduced adiposity and lower fasting plasma glucose level in persons with spinal cord injury. Spinal Cord. 2017;55:378-82. [Crossref]  [PubMed] 
  15. Aybay C. Spastisite-yetişkin hastaya yaklaşım: klinik, elektrofizyolojik ve biyomekanik değerlendirme [Spasticity-approach to the adult patient: clinical, electrophysiological and biomechanical assessment]. Türk Fiz Tıp Rehab Derg. 2007;53:45-52. [Link] 
  16. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67:206-7. [Crossref]  [PubMed] 
  17. Kirshblum SC, Burns SP, Biering-Sorensen F, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011;34:535-46. [Crossref]  [PubMed]  [PMC] 
  18. Biering-Sørensen F, Bohr H, Schaadt O. Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia. 1988;26(5):293-301. [Crossref]  [PubMed] 
  19. Tweedy SM, Beckman EM, Geraghty TJ, et al. Exercise and sports science Australia (ESSA) position statement on exercise and spinal cord injury. J Sci Med Sport. 2017;20:108-15. [Crossref]  [PubMed] 
  20. Smith É, Carroll Á. Bone mineral density in adults disabled through acquired neurological conditions: a review. J Clin Densitom. 2011;14:85-94. [Crossref]  [PubMed] 
  21. Ashe MC, Craven C, Eng JJ, et al; the SCIRE Research Team. Prevention and treatment of bone loss after a spinal cord injury: a systematic review. Top Spinal Cord Inj Rehabil. 2007;13:123-45. [Crossref]  [PubMed]  [PMC] 
  22. Biering-Sørensen F, Hansen B, Lee BS. Non-pharmacological treatment and prevention of bone loss after spinal cord injury: a systematic review. Spinal Cord. 2009;47:508-18. [Crossref]  [PubMed] 
  23. Morse LR, Nguyen N, Battaglino RA, et al. Wheelchair use and lipophilic statin medications may influence bone loss in chronic spinal cord injury: findings from the FRASCI-bone loss study. Osteoporos Int. 2016;27:3503-11. [Crossref]  [PubMed]  [PMC] 
  24. Biering-Sørensen B, Kristensen IB, Kjaer M, et al. Muscle after spinal cord injury. Muscle Nerve. 2009;40:499-519. [Crossref]  [PubMed] 
  25. Cha S, Yun JH, Myong Y, et al. Spasticity and preservation of skeletal muscle mass in people with spinal cord injury. Spinal Cord. 2019;57:317-23. [Crossref]  [PubMed] 
  26. Moore CD, Craven BC, Thabane L, et al. Lower-extremity muscle atrophy and fat infiltration after chronic spinal cord injury. J Musculoskelet Neuronal Interact. 2015;15:32-41. [PubMed]  [PMC] 
  27. Giangregorio L, McCartney N. Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med. 2006;29:489-500. [Crossref]  [PubMed]  [PMC]