ISSN: 1309 - 3843 E-ISSN: 1307 - 7384
FİZİKSEL TIP VE REHABİLİTASYON
BİLİMLERİ DERGİSİ
www.jpmrs.com
Kayıtlı İndexler


OLGU SUNUMLARI

Robotik Rehabilitasyon Kullanma Kriterleri Biraz Daha Genişletilmeli mi?
Should the Criteria for Using Robo c Rehabilita on be Expanded Some More?
Received Date : 04 Aug 2017
Accepted Date : 06 Dec 2017
Doi: 10.31609/jpmrs.2017-57518 - Makale Dili: TR
J PMR Sci 2019;22(1):25-8
ÖZET
Sabit “treadmill” egzersiz robotlarında; kalça ve diz eklem sürücüsü olarak da adlandırabileceğimiz robot kolları içerisine yerleştirilmiş direkt akımla çalışan motor sistemler, robot kollarına monte kelepçeler ve dorsifleksör asistif mekanizması yer almaktadır. Bu kollar hasarlanabileceği için ve ekleme verilebilecek hasardan dolayı ciddi düzeyde spastisite ve kontraktür varlığı, kalça/diz/ayak bileği artrodezleri kontrendikasyon olarak kabul edilmektedir. Oysa kinematik robotik ölçümler, üst ve alt ekstremitelerde özellikle eklem hareket açıklığında, motor defisitler ve eldeki proprioseptif fonksiyonlarda düzelme göstermektedir. Bu çalışmada, robotik tedavi kontrendikasyonu olmasına rağmen robotik rehabilitasyona alınan, hem eklem hareket açıklığında hem de ağrıda düzelmesi olan bir hasta sunulmuştur. Ayrıca bu konudaki kriterlere yönelik literatür taraması gözden geçirilmiştir.
ABSTRACT
There are motor system that we can call hip and knee driver works with direct current located in robotic arms, robotic arm mounting clamps and dorsiflexor assistif mechanism in the static treadmill exercise robots. Severe spasticity and contracture, hip/knee/ankle arthrodesis are considered as contraindications, as these arms may be damaged and the attachment may be inflicted. However, kinematic robotic measurements show improvement in joint motion and motor deficits in the upper and lower limbs and propioceptive functions in the hands. In our case report, a patient who had a robotic treatment although contraindicaiton and had improvement both range of motion and pain was presented. Also the literature about the criteria on this subject was rewieved.
REFERENCES
  1. Maggioni S, Melendez-Calderon A, Van Asseldonk E, et al. Robot-aided assessment of lower extremity functions: a review. J Neuroeng Rehabil. 2016;13:72. [Crossref]  [PubMed]  [PMC] 
  2. Iosa M, Morone G, Cherubini A, et al. The three laws of neurorobotics: a review on what neurorehabilitation robots should do for patients and clinicians. J Med Biol Eng. 2016;36:1-11. [Crossref]  [PubMed]  [PMC] 
  3. Ozbudak Demir S. Omurilik yaralanmali hastalarda robot yardimli yurume egitimi. Turk J Phys Med Rehab. 2015;61:37-44. [Crossref] 
  4. Ingemanson ML, Rowe JB, Chan V, et al. Use of a robotic device to measure agerelated decline in finger proprioception. Exp Brain Res. 2016;234:83-93. [Crossref]  [PubMed] 
  5. Cappello L, Elangovan N, Contu S, et al. Robot-aided assessment of wrist proprioception. Front Hum Neurosci. 2015;9:198. [Crossref]  [PubMed]  [PMC] 
  6. Domingo A, Lam T. Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. J Neuroeng Rehabil. 2014;11:167. [Crossref]  [PubMed]  [PMC] 
  7. Otaka E, Otaka Y, Kasuga S, et al. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients. J Neuroeng Rehabil. 2015;12:66. [Crossref]  [PubMed]  [PMC] 
  8. Mehrholz J, Werner C, Kugler J, et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2007;(4):CD006185. [Crossref] 
  9. Mehrholz J, Elsner B, Werner C, et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2013;(7):CD006185. [Crossref] 
  10. Mehrholz J, Pohl, M, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2014;(1):CD002840. [Crossref] 
  11. Masiero S, Poli P, Rosati G, et al. The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices. 2014;11:187-98. [Crossref]  [PubMed] 
  12. Datteri E. Predicting the long-term effects of human-robot interaction: a reflection on responsibility in medical robotics. Sci Eng Ethics. 2013;19:139-60. [Crossref]  [PubMed] 
  13. Ludvig D, Perreault EJ. Estimation of joint impedance using short data segments. Conf Proc IEEE Eng Med Biol Soc. 2011; 2011:4120-3. [Crossref] 
  14. Kearney RE, Hunter IW. System identification of human joint dynamics. Crit Rev Biomed Eng. 1990;18:55-87. [PubMed] 
  15. Mirbagheri MM, Barbeau H, Kearney RE. Intrinsic and reflex contributions to human ankle stiffness: variation with activation level and position. Exp Brain Res. 2000;135:423-36. [Crossref]  [PubMed] 
  16. Sinkjaer T, Magnussen I. Passive, intrinsic and reflex-mediated stiffness in the ankle extensors of hemiparetic patients. Brain. 1994;117:355-63. [Crossref]  [PubMed]