ISSN: 1309 - 3843 E-ISSN: 1307 - 7384
FİZİKSEL TIP VE REHABİLİTASYON
BİLİMLERİ DERGİSİ
www.jpmrs.com
Kayıtlı İndexler


OLGU SUNUMLARI

Omurilik Yaralanmalı Hastalarda Transkraniyal Doğru Akım Stimülasyonu ve Robot Yardımlı Yürüme Eğitiminin Motor Fonksiyon Üzerine Etkileri: Olgu Serisi
The Effects of Transcranial Direct Current Stimulation and Robot Assisted Gait Training on Motor Function in Patients with Spinal Cord Injury: A Case Series
Received Date : 19 Aug 2020
Accepted Date : 29 Dec 2020
Available Online : 05 May 2021
Doi: 10.31609/jpmrs.2020-78491 - Makale Dili: EN
J PMR Sci. 2021;24(2):192-6
ÖZET
Son yıllarda transkraniyal doğru akım stimülasyonu [transcranial direct current stimulation (tDAS)], omurilik yaralanması (OY) sonrası fonksiyonelliği geliştirmede kullanılan tedavi seçeneklerinden birisi olmuştur. Literatürde, inkomplet OY hastalarında tDAS’nin diğer yürüyüş eğitimi yöntemleriyle birlikte uygulanmasının lokomosyon üzerine etkisini değerlendiren yetersiz sayıda veri bulunmaktadır. Bu yazıda; inkomplet OY hastalarında tDAS, robot destekli yürüyüş eğitimi ve fizik tedavinin birlikte uygulanmasının kas gücü gelişimi, lokomotor becerileri, denge ve günlük yaşam aktiviteleri üzerine etkilerini 5 hastadan oluşan bir olgu serisi olarak sunduk. Kliniğimizde yatarak tedavi gören 5 hastaya 6 hafta süre ile haftada 5 gün, toplam 30 seans rehabilitasyon programı uygulandı. Her gün 2 saat fizik tedavi, 20 dk tDAS ve 30 dk robot destekli yürüme eğitimi uygulandı. Hastalar tedavi programı öncesi ve sonrası manuel kas testi, on metrelik yürüme testi [ten meter walking test (10MWT)], Oturmada Fonksiyon Testi [Function in Sitting Test (FIST)], Spinal Kord Yaralanması İçin Yürüme İndeksi [Walking Index for SCI (WISCI)] ve Spinal Kord Yaralanması İçin Yürüme İndeksi [Walking Index for SCI (WISCI)] ölçekleri ile değerlendirildi. Beş hastanın yaş ortalaması 28,4±5,13 idi. Olaydan sonra geçen süre ortalama süre 5,8±1,30 yıldı. Hastaların hepsinde travmatik omurilik yaralanması mevcuttu. MMT, 10 MWT, FIST, WISCI ve SCIM III de gelişme kaydedildi. Bu bulgular, daha büyük hasta grubu ile yapılacak çalışmalarla desteklenmelidir. İlerideki çalışmalarda tedavi kombinasyonumuz ile sham tDAS, robot destekli yürüme eğitimi, fizik tedavi kombinasyonu ve sadece fizik tedavi uygulanan hasta grupları arasında karşılaştırmalar yapılmalıdır.
ABSTRACT
In recent years, transcranial direct current stimulation (tDCS) has emerged as a possible therapeutic modality in enhancing functionality following spinal cord injury (SCI). However, the role of tDCS in enhancing locomotion when used alongside other methods of gait training in patients with incomplete SCI remains inadequately addressed in the literature. Here we present the results of an observational case series on the effects of tDCS, robot assisted gait training (RAGT) and physical therapy (PT) on the development of muscle power, locomotor skills, balance and activities of daily living (ADL) in five patients with a history of chronic incomplete SCI. Five patients received two hours of PT, twenty minutes of tDCS and thirty minutes of RAGT five times a week to a total of thirty sessions on an inpatient basis. Patients were evaluated before and following the treatment program using manual muscle testing (MMT), a ten meter walking test (10MWT), Function in Sitting Test (FIST), the Walking Index for SCI (WISCI) and the Spinal Cord Independence Measure III (SCIM III) rating scale. Mean age of the five patients was 28.4±5.13 years. Mean time since SCI was 5.8±1.30 years. Aetiology of SCI was trauma in all cases. Improvements in MMT, 10 MWT, FIST, WISCI, SCIM III were recorded. The findings of this study suggest that this combination of treatment is effective in improving locomotor skills in those with chronic SCI. These findings need to be consolidated using a larger patient sample and compared to sham tDCS, RAGT and PT and PT alone.
REFERENCES
  1. Hu XL, Tong KY, Li R, et al. Effectiveness of functional electrical stimulation (FES)-robot assisted wrist training on persons after stroke. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5819-22. [Crossref]  [PubMed] 
  2. Rushton PW, Miller WC, Mortenson WB, et al. Satisfaction with participation using a manual wheelchair among individuals with spinal cord injury. Spinal Cord. 2010;48:691-6. [Crossref]  [PubMed]  [PMC] 
  3. Dietz V, Wirz M, Curt A, et al. Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function. Spinal Cord. 1998;36:380-90. [Crossref]  [PubMed] 
  4. Nam KY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroeng Rehabil. 2017;14:24. [Crossref]  [PubMed]  [PMC] 
  5. Alisar DC, Ozen S, Sozay S. Effects of Bihemispheric Transcranial Direct Current Stimulation on Upper Extremity Function in Stroke Patients: A randomized Double-Blind Sham-Controlled Study. J Stroke Cerebrovasc Dis. 2020;29:104454. [Crossref]  [PubMed] 
  6. Raithatha R, Carrico C, Powell ES, et al. Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study. NeuroRehabilitation. 2016;38:15-25. [Crossref]  [PubMed] 
  7. Kumru H, Murillo N, Benito-Penalva J, et al. Transcranial direct current stimulation is not effective in the motor strength and gait recovery following motor incomplete spinal cord injury during Lokomat(®) gait training. Neurosci Lett. 2016;620:143-7. [Crossref]  [PubMed] 
  8. Gündüz B, Erhan B. Omurilik yaralanması nörolojik sınıflaması için uluslararası standartlar değerlendirme formunun güncellenmesi [Update for examination sheet of international standards for neurological classification of spinal cord injury]. Turk J Phys Med. 2015;61:91-4. [Crossref] 
  9. Chatrian GE, Lettich E, Nelson PL. Ten percent electrode system for topographic studies of spontaneous and evoked EEG activity. Am J EEG Technol. 1985;25:83-92. [Crossref] 
  10. Gündüz B. ASIA Update-ASIA Impairment Scale: Level Determination, Classification, and Case Examples. Turk J Phys Med Rehab 2015;61:25-31. [Crossref] 
  11. Wadsworth CT, Krishnan R, Sear M, et al. Intrarater reliability of manual muscle testing and hand-held dynametric muscle testing. Physical Therapy. 1987;67:1342-7. [Crossref]  [PubMed] 
  12. Cuthbert, SC, Goodheart Jr GJ. On the reliability and validity of manual muscle testing: A literature review. Chiropr Osteopat. 2017;15:4. [PubMed]  [PMC] 
  13. van Hedel HJ, Wirz M, Dietz V. Standardized assessment of walking capacity after spinal cord injury: the European network approach. Neurol Res. 2008;30:61-73. [Crossref]  [PubMed] 
  14. Ditunno JF Jr, Ditunno PL, Graziani V, et al. Walking index for spinal cord injury (WISCI): an international multicenter validity and reliability study. Spinal Cord. 2000;38:234-43. [Crossref]  [PubMed] 
  15. Kesiktas N, Paker N, Bugdayci D, et al. Turkish adaptation of Spinal Cord Independence Measure--version III. Int J Rehabil Res. 2012;35:88-91. [Crossref]  [PubMed] 
  16. Unalan H, Misirlioglu TO, Erhan B, et al. Validity and reliability study of the Turkish version of Spinal Cord Independence Measure-III. Spinal Cord. 2015;53:455-60. [Crossref]  [PubMed] 
  17. Martin JH. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury. Neural Regen Res. 2016;11:1389-1. [Crossref]  [PubMed]  [PMC] 
  18. Gunduz A, Rothwell J, Vidal J, et al. Non-invasive brain stimulation to promote motor and functional recovery following spinal cord injury. Neural Regen Res. 2017;12:1933-8. [Crossref]  [PubMed]  [PMC] 
  19. de Araújo AVL, Ribeiro FPG, Massetti T, et al. Effectiveness of anodal transcranial direct current stimulation to improve muscle strength and motor functionality after incomplete spinal cord injury: a systematic review and meta-analysis. Spinal Cord. 2020;58:635-46. [Crossref]  [PubMed]