ISSN: 1309 - 3843 E-ISSN: 1307 - 7384
FİZİKSEL TIP VE REHABİLİTASYON
BİLİMLERİ DERGİSİ
www.jpmrs.com
Kayıtlı İndexler


ORIJINAL ARAŞTIRMA

Kalça Adduktor Spastisitesi Olan Serebral Palsili Çocuklarda Botulinum Toksin-A Enjeksiyonu: Retrospektif Bir Çalışma
Botulinum Toxin-A Injection for Hip Adductor Spasticity in Children with Cerebral Palsy: A Retrospective Study
Received Date : 20 Mar 2021
Accepted Date : 27 Apr 2021
Available Online : 05 Apr 2021
Doi: 10.31609/jpmrs.2021-83191 - Makale Dili: EN
J PMR Sci. 2021;24(3):277-83
ÖZET
Amaç: Kalça adduktor kas spastisitesi olan serebral palsili (SP) çocuklarda botulinum toksin-A’nın klinik ve radyolojik etkinliğini araştırmak. SP intrauterin ya da erken infantil dönemde meydana gelen hareket ve postür bozukluğuna yol açan santral sinir sisteminin nonprogressive bir hastalığıdır. Gereç ve Yöntemler: Çalışma retrospektif olarak dizayn edildi. Kalça adduktor kas spastisitesi olması sebebi ile 1 yıl süresince düzenli BoNT-A enjeksiyonu uygulanan hastalar belirlendi. Klinik değerlendirme için, dizler arası mesafe, modifiye Asworth skalası (MAS) ve kaba motor fonksiyon sınıflandırma sistemi (KMFSS) hasta dosyalarından kaydedildi. Radyolojik değerlendirme anterior-posterior pelvis radyografisinde asetabular indeks (AI) ve kollo-diafizer açı (KDA) ölçümü yapılarak belirlendi. Bulgular: Çalışmaya dâhil edilen 20 hastanın ortalama yaşları (erkek: 12, kız: 8) 84,8±20,9 aydı (minimum-maksimum: 48-120 ay). 7 hasta diplejik, 7 hasta kuadriplejik ve 6 hasta mix tip SP’idi. Hastaların MAS ve KMFSS skorları ilk enjeksiyondan sonraki 3. ve 12. ayda büyük ölçüde azaldı (sağ p:0,007 sol p:0,005 ve p:0,002 idi). Benzer şekilde, 3. ve 12. ayda dizler arası mesafe de giderek arttı (p<0,001). Ancak radyolojik değerlendirmede AI ve KDA’da anlamlı düzelme görülmedi (p>0,05). Sonuç: Bu çalışmada, kalça adduktor kas spastisitesi olan SP’li çocuklarda seri BoNT-A enjeksiyonunun klinik bir düzelme sağladığı ve radyolojik olarak ise progressif kalça dislokasyonunu önlediği gösterilmiştir.
ABSTRACT
Objective: To assess clinical and radiological effectiveness of botulinum neurotoxin-A (BoNT-A) injection in children with cerebral palsy (CP) with spasticity in the hip adductor muscles. CP is a nonprogressive central nervous system disease that occurs in the intrauterine or early infantile period that leads to posture or motor dysfunction and activity and movement-limitation. Material and Methods: This study was designed as a retrospective. Patients who received BoNT-A injections consecutively during one year due to spasticity in bilateral hip adductor muscles were identified. For clinical evaluation, distance between the knees, Modified Ashworth Scale (MAS), and Gross Motor Function Classification System (GMFCS) scores were recorded from the patient files. Radiological evaluation was performed by measuring acetabular index (AI) and collo-diaphyseal angle (CDA) in the A/P pelvis radiographs available in the patient registry system. Results: The mean age of 20 patients (boys:12, girls:8) included in the study was 84.8±20.9 months (minimum-maximum: 48-120 months). Seven patients had diplegic, 7 patients quadriplegic and 6 patients mixed type involvement. The MAS and GMFCS scores of the patients were found to be decreased significantly at the third and twelfth month after the first injection compared to pre-treatment (right p:0.007, left p:0.005 and p:0.002, respectively). Similarly, the distance between knees had increased statistically at the third and twelfth month (p<0.001). However, in the radiological evaluation, AI and CDA measurements were not statistically different after 3 months and 12 months compared to pre-treatment (p>0.05). Conclusion: This study demonstrated that sequential BoNT-A injections may provide clinical improvement and prevent radiological progression of the hip in children with CP with bilateral hip adductor spasticity.
REFERENCES
  1. Bax M, Goldstein M, Rosenbaum P, et al; Executive committee for the definition of cerebral palsy. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005;47:571-6. [Crossref]  [PubMed] 
  2. Sankar C, Mundkur N. Cerebral palsy-definition, classification, etiology and early diagnosis. Indian J Pediatr. 2005;72:865-8. [Crossref]  [PubMed] 
  3. Serdaroğlu A, Cansu A, Ozkan S, et al. Prevalence of cerebral palsy in Turkish children between the ages of 2 and 16 years. Dev Med Child Neurol. 2006;48:413-6. [Crossref]  [PubMed] 
  4. Shrader MW, Wimberly L, Thompson R. Hip surveillance in children with cerebral palsy. J Am Acad Orthop Surg. 2019;27:760-8. [Crossref]  [PubMed] 
  5. Howard CB, McKibbin B, Williams LA, et al. Factors affecting the incidence of hip dislocation in cerebral palsy. J Bone Joint Surg Br. 1985;67(4):530-2. [Crossref]  [PubMed] 
  6. Lonstein JE, Beck K. Hip dislocation and subluxation in cerebral palsy. J Pediatr Orthop. 1986;6:521-6. [Crossref]  [PubMed] 
  7. Terjesen T. Development of the hip joints in unoperated children with cerebral palsy: a radiographic study of 76 patients. Acta Orthop. 2006;77:125-31. [Crossref]  [PubMed] 
  8. Ramstad K, Jahnsen R, Skjeldal OH, et al. Characteristics of recurrent musculoskeletal pain in children with cerebral palsy aged 8 to 18 years. Dev Med Child Neurol. 2011;53: 1013-8. [Crossref]  [PubMed] 
  9. Graham HK. Painful hip dislocation in cerebral palsy. Lancet. 2002;359:907-8. [Crossref]  [PubMed] 
  10. Laplaza FJ, Root L, Tassanawipas A, et al. Femoral torsion and neck-shaft angles in cerebral palsy. J Pediatr Orthop. 1993;13:192-9. [PubMed] 
  11. Sharrard WJ, Allen JM, Heaney SH. Surgical prophylaxis of subluxation and dislocation of the hip in cerebral palsy. J Bone Joint Surg Br. 1975;57:160-6. [Crossref]  [PubMed] 
  12. Tilton AH. Management of spasticity in children with cerebral palsy. Semin Pediatr Neurol. 2004;11:58-65. [Crossref]  [PubMed] 
  13. Koog YH, Min BI. Effects of botulinum toxin A on calf muscles in children with cerebral palsy: a systematic review. Clin Rehabil. 2010;24: 685-700. [Crossref]  [PubMed] 
  14. Ryll U, Bastiaenen C, De Bie R, et al. Effects of leg muscle botulinum toxin A injections on walking in children with spasticity-related cerebral palsy: a systematic review. Dev Med Child Neurol. 2011;53:210-6. [Crossref]  [PubMed] 
  15. Pin TW, Elmasry J, Lewis J. Efficacy of botulinum toxin A in children with cerebral palsy in Gross Motor Function Classification System levels IV and V: a systematic review. Dev Med Child Neurol. 2013;55:304-13. [Crossref]  [PubMed] 
  16. Shrader M.W., Crea B. Hip Dysplasia in Children with Cerebral Palsy. Cerebral Palsy. 2018;27:201-8. [Crossref] 
  17. Kalen V, Bleck EE. Prevention of spastic paralytic dislocation of the hip. Dev Med Child Neurol. 1985;27:17-24. [Crossref]  [PubMed] 
  18. Miller F, Slomczykowski M, Cope R, et al. Computer modeling of the pathomechanics of spastic hip dislocation in children. J Pediatr Orthop. 1999;19:486-92. [Crossref]  [PubMed] 
  19. Coutinho dos Santos LH, Bufara Rodrigues DC, Simões de Assis TR, et al. Effective results with botulinum toxin in cerebral palsy. Pediatr Neurol. 2011;44:357-63. [Crossref]  [PubMed] 
  20. Linder M, Schindler G, Michaelis U, et al. Medium-term functional benefits in children with cerebral palsy treated with botulinum toxin type A: 1-year follow-up using gross motor function measure. Eur J Neurol. 2001;8:120-6. [Crossref]  [PubMed] 
  21. Mall V, Heinen F, Kirschner J, et al. Evaluation of botulinum toxin A therapy in children with adductor spasm by gross motor function measure. J Child Neurol. 2000;15:214-7. [Crossref]  [PubMed] 
  22. Aydil S, Akpinar FM, Akpinar E, et al. Effectiveness of multilevel botulinum toxin a ınjection with ıntegrated treatment program on spasticity reduction in non-ambulatory young children with cerebral palsy. Med Princ Pract. 2019;28:309-14. [Crossref]  [PubMed]  [PMC] 
  23. Mirska A, Kułak W, Okurowska-Zawada B, et al. Effectiveness of multiple botulinum toxin sessions and the duration of effects in spasticity therapy in children with cerebral palsy. Childs Nerv Syst. 2019;35:141-7. [Crossref]  [PubMed]  [PMC] 
  24. Alexander C, Elliott C, Valentine J, et al. Muscle volume alterations after first botulinum neurotoxin A treatment in children with cerebral palsy: a 6-month prospective cohort study. Dev Med Child Neurol. 2018;60:1165-71. [Crossref]  [PubMed] 
  25. Eek MN, Himmelmann K. No decrease in muscle strength after botulinum neurotoxin-a injection in children with cerebral palsy. Front Hum Neurosci. 2016;10:506. [Crossref]  [PubMed]  [PMC] 
  26. Boyd RN, Dobson F, Parrott J, et al. The effect of botulinum toxin type A and a variable hip abduction orthosis on gross motor function: a randomized controlled trial. Eur J Neurol. 2001;8:109-19. [Crossref]  [PubMed] 
  27. Yang Y, Porter D, Zhao L, et al. How to judge pelvic malposition when assessing acetabular index in children? Three simple parameters can determine acceptability. J Orthop Surg Res. 2020;15:12. [Crossref]  [PubMed]  [PMC] 
  28. Shore BJ, Martinkevich P, Riazi M, et al; CHOP Investigative Team. Reliability of radiographic assessments of the Hip in cerebral palsy. J Pediatr Orthop. 2019;39:e536-e541. [Crossref]  [PubMed] 
  29. Flynn JM, Miller F. Management of hip disorders in patients with cerebral palsy. J Am Acad Orthop Surg. 2002;10:198-209. [Crossref]  [PubMed] 
  30. Jung NH, Heinen F, Westhoff B, Doederlein L, Reissig A, Berweck S, Linder-Lucht M, Schandelmaier S, Mall V; German Abo study group. Hip lateralisation in children with bilateral spastic cerebral palsy treated with botulinum toxin type A: a 2-year follow-up. Neuropediatrics. 201;42:18-23. [Crossref]  [PubMed] 
  31. Pidcock FS, Fish DE, Johnson-Greene D, et al. Hip migration percentage in children with cerebral palsy treated with botulinum toxin type A. Arch Phys Med Rehabil. 2005;8:431-5. [Crossref]  [PubMed] 
  32. Placzek R, Deuretzbacher G, Meiss AL. Treatment of lateralisation and subluxation of the hip in cerebral palsy with Botulinum toxin A: preliminary results based on the analysis of migration percentage data. Neuropediatrics. 2004;35:6-9. [Crossref]  [PubMed]