ISSN: 1309 - 3843 E-ISSN: 1307 - 7384
FİZİKSEL TIP VE REHABİLİTASYON
BİLİMLERİ DERGİSİ
www.jpmrs.com
Kayıtlı İndexler


ORIJINAL ARAŞTIRMA

İnme Sonrası Hemiparetik Hastalarda Distal Femoral Kıkırdak ve Kuadriseps Kas Kalınlığının Ultrasonografik Ölçümü ve Fonksiyonel Durumla İlişkisi
Ultrasonographic Measurement of the Distal Femoral Cartilage and Quadriceps Muscle Thickness in Hemiparetic Patients After Stroke and the Associations Functional Status
Received Date : 07 Dec 2020
Accepted Date : 19 Apr 2021
Available Online : 20 May 2021
Doi: 10.31609/jpmrs.2020-80466 - Makale Dili: EN
J PMR Sci. 2021;24(3):223-30
ÖZET
Amaç: İnme hastalarında hem hemiplejik hem de sağlam taraf femoral kıkırdak ve kuadriseps kas kalınlığını ultrasonografi (USG) kullanarak karşılaştırmak ve bu ölçümler ile fonksiyonel parametreler arasındaki ilişkiyi incelemek. Gereç ve Yöntemler: Bu çalışmaya, inme nedeniyle takip edilen 65 hasta dâhil edildi. Her 2 dizdeki femoral kıkırdak ve kuadriseps kası [rektus femoris (RF)+vastus intermedius (VI)] kalınlığı USG ile ölçüldü; motor değerlendirme için Brunnstrom ve Fugl-Meyer testi kullanıldı. Fonksiyonel değerlendirmede ise Barthel İndeksi [Barthel Index (BI)] ve Fonksiyonel Ambulasyon Sınıflandırması (FAS) kullanıldı. Bulgular: Mediyal, interkondiler ve lateral bölgelerdeki femoral kıkırdak kalınlığı değerleri sağlam ve hemiplejik taraflar arasında anlamlı olarak farklı değildi. RF+VI değeri sağlam tarafa göre hemiplejik tarafta anlamlı olarak daha düşüktü (p<0,05). RF+VI değeri ile BI ve FAS skorları arasında anlamlı pozitif korelasyonlar vardı. Sonuç: İnme hastalarında femoral kıkırdak kalınlığının ölçümü hemiplejik taraf ile sağlam taraf arasında önemli ölçüde farklılık göstermezken, kuadriseps kas kalınlığı ölçümleri sağlam tarafa göre hemiplejik tarafta anlamlı ölçüde daha düşüktü. Kuadriseps kas kalınlığı değerleri inmeli hastalarda fonksiyonel durumu etkileyebilmektedir.
ABSTRACT
Objective: To compare in stroke patients the femoral cartilage and quadriceps muscle thickness on both the hemiplegic and intact sides using ultrasonography (USG) and examine the relationship between these measurements and functional parameters. Material and Methods: Sixty-five in patients who were under follow-up for stroke were included in this study. Femoral cartilage and quadriceps muscle [rectus femoris (RF)+vastus intermedius (VI)] thickness in both knees were measured using USG; Brunnstrom and Fugl-Meyer test were used for motor evaluation. Barthel Index (BI) and Functional Ambulation Classification (FAC) were used for functional evaluation. Results: The bilateral femoral cartilage thickness on medial, intercondylar and lateral regions values were not significantly different between the intact and hemiplegic sides. The RF+VI value was significantly lower on the hemiplegic side than on the intact side (p<0.05). There were significant positive correlations between the RF+VI value and the BI and FAC scores. Conclusion: The measurement of the femoral cartilage thickness in stroke patients did not differ significantly between the hemiplegic side and the intact side, whereas the quadriceps muscle thickness measurements were significantly lower on the hemiplegic side than on the intact side. Quadriceps muscle thickness values affect the functional status in stroke patients.
REFERENCES
  1. Inatomi Y, Nakajima M, Yonehara T, et al. Ipsilateral hemiparesis in ischemic stroke patients. Acta Neurol Scand. 2017;136:31-40. [Crossref] [PubMed] 
  2. Yavuzer G, Küçükdeveci A, Arasil T, et al. Rehabilitation of stroke patients: clinical profile and functional outcome. Am J Phys Med Rehabil. 2001;80:250-5. [Crossref] [PubMed] 
  3. Ando A, Suda H, Hagiwara Y, et al. Reversibility of immobilization-induced articular cartilage degeneration after remobilization in rat knee joints. Tohoku J Exp Med. 2011;224:77-85. [Crossref] [PubMed] 
  4. Hafer-Macko CE, Ryan AS, Ivey FM, et al. Skeletal muscle changes after hemiparetic stroke and potential beneficial effects of exercise intervention strategies. J Rehabil Res Dev. 2008;45:261-72. [Crossref] [PubMed] [PMC] 
  5. Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis. Clin Sports Med. 2005;24:1-12. [Crossref] [PubMed] 
  6. Sánchez-Sánchez ML, Ruescas-Nicolau MA, Carrasco JJ, et al. Cross-sectional study of quadriceps properties and postural stability in patients with chronic stroke and limited vs. non-limited community ambulation. Top Stroke Rehabil. 2019;26:503-10. [Crossref] [PubMed] 
  7. Scherbakov N, von Haehling S, Anker SD, et al. Stroke induced Sarcopenia: muscle wasting and disability after stroke. Int J Cardiol. 2013;170:89-94. [Crossref] [PubMed] 
  8. Harris ML, Polkey MI, Bath PM, et al. Quadriceps muscle weakness following acute hemiplegic stroke. Clin Rehabil. 2001;15:274-81. [Crossref] [PubMed] 
  9. Ryan AS, Dobrovolny CL, Smith GV, et al. Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients. Arch Phys Med Rehabil. 2002;83:1703-7. [Crossref] [PubMed] 
  10. Iversen E, Hassager C, Christiansen C. The effect of hemiplegia on bone mass and soft tissue body composition. Acta Neurol Scand. 1989;79:155-9. [Crossref] [PubMed] 
  11. Metoki N, Sato Y, Satoh K, et al. Muscular atrophy in the hemiplegic thigh in patients after stroke. Am J Phys Med Rehabil. 2003;82:862-5. Erratum in: Am J Phys Med Rehabil. 2019;98:341-2. [Crossref] [PubMed] 
  12. Pang MY, Eng JJ, McKay HA, et al. Reduced hip bone mineral density is related to physical fitness and leg lean mass in ambulatory individuals with chronic stroke. Osteoporos Int. 2005;16:1769-79. [Crossref] [PubMed] [PMC] 
  13. Pang MY, Eng JJ. Muscle strength is a determinant of bone mineral content in the hemiparetic upper extremity: implications for stroke rehabilitation. Bone. 2005;37:103-11. [Crossref] [PubMed] [PMC] 
  14. Tunç H, Oken O, Kara M, et al. Ultrasonographic measurement of the femoral cartilage thickness in hemiparetic patients after stroke. Int J Rehabil Res. 2012;35:203-7. [Crossref] [PubMed] 
  15. Winalski CS, Gupta KB. Magnetic resonance imaging of focal articular cartilage lesions. Top Magn Reson Imaging. 2003;14:131-44. [Crossref] [PubMed] 
  16. Vanwanseele B, Lucchinetti E, Stüssi E. The effects of immobilization on the characteristics of articular cartilage: current concepts and future directions. Osteoarthritis Cartilage. 2002;10:408-19. [Crossref] [PubMed] 
  17. Fugl-Meyer AR, Jääskö L, Leyman I, et al. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:13-31. [PubMed] 
  18. Küçükdeveci AA, Yavuzer G, Tennant A, et al. Adaptation of the modified Barthel Index for use in physical medicine and rehabilitation in Turkey. Scand J Rehabil Med. 2000;32:87-92. [Crossref] [PubMed] 
  19. Kollen B, van de Port I, Lindeman E, et al. Predicting improvement in gait after stroke: a longitudinal prospective study. Stroke. 2005;36:2676-80. [Crossref] [PubMed] 
  20. Şahin Onat Ş, Malas FÜ, Öztürk GT, et al. Ultrasonographic assessment of the quadriceps muscle and femoral cartilage in transtibial amputees using different prostheses. Prosthet Orthot Int. 2016;40:484-9. [Crossref] [PubMed] 
  21. O'Connor KM. Unweighting accelerates tidemark advancement in articular cartilage at the knee joint of rats. J Bone Miner Res. 1997;12:580-9. [Crossref] [PubMed] 
  22. Glaser C, Putz R. Functional anatomy of articular cartilage under compressive loading Quantitative aspects of global, local and zonal reactions of the collagenous network with respect to the surface integrity. Osteoarthritis Cartilage. 2002;10:83-99. [Crossref] [PubMed] 
  23. Nozoe M, Kanai M, Kubo H, et al. Changes in quadriceps muscle thickness in acute non-ambulatory stroke survivors. Top Stroke Rehabil. 2016;23:8-14. [Crossref] [PubMed] 
  24. Hayashida I, Tanimoto Y, Takahashi Y, et al. Correlation between muscle strength and muscle mass, and their association with walking speed, in community-dwelling elderly Japanese individuals. PLoS One. 2014;9:e111810. [Crossref] [PubMed] [PMC]