ISSN: 1309 - 3843 E-ISSN: 1307 - 7384
FİZİKSEL TIP VE REHABİLİTASYON
BİLİMLERİ DERGİSİ
www.jpmrs.com
Kayıtlı İndexler


ORIJINAL ARAŞTIRMA

Ankilozan Spondilit Hastalarında Kemik Formasyonu Üzerine Etki Eden Potansiyel Belirteçlerin Serum Düzeylerinin Radyolojik Progresyon ve Hastalık Aktivasyonu ile İlişkisi
The Relationship of Serum Levels of Potential Biomarkers Affecting Bone Formation with Radiological Progression and Disease Activation in Patients with Ankylosing Spondylitis
Received Date : 25 Jul 2022
Accepted Date : 12 Aug 2022
Available Online : 18 Aug 2022
Doi: 10.31609/jpmrs.2022-92597 - Makale Dili: EN
J PMR Sci. 2022;25(3):377-85
ÖZET
Amaç: Bu çalışmada, ankilozan spondilit (AS) hastalarında radyografik progresyona ve hastalık aktivitesine katkıda bulunabilecek Dickkopf-1, sclerostin, kemik morfogenetik protein [bone morphogenetic protein (BMP)]-2 ve 4, interlökin (IL)-17 ve 23 düzeylerinin belirlenmesi amaçlanmıştır. Gereç ve Yöntemler: Çalışmamız kesitsel tarzda olup, 238 AS hastası ve 102 kişiden oluşan, yaş ve cinsiyet yönünden eşleştirilmiş kontrol grubu üzerinde yapılmıştır. Hastaların çalışmaya dâhil edildiği andaki hastalık aktivitesi, Bath Ankilozan Spondilit Hastalık Aktivite İndeksi [Bath Ankylosing Spondylitis Disease Activity Index (BASDAI)] ile değerlendirildi. Hasta ve kontrol gruplarında Dickkopf-1, BMP-2 ve 4, sclerostin, IL-17 ve 23’ün kandaki seviyeleri ölçüldü. Hastaların radyografik değerlendirmesi, modifiye Stokes Ankilozan Spondilit Spinal Skoru (mSASSS) esas alınarak hesaplandı. Bulgular: AS hastalarının serum Dickkopf-1, sclerostin, IL-17 ve 23 seviyeleri kontrol grubuna göre anlamlı derecede yüksekti. Serum BMP-4 düzeyleri açısından fark bulunmazken, BMP-2 düzeyleri kontrol grubunda anlamlı olarak yüksekti (p<0,001). mSASSS ortalaması 4,4±6,2 olup, varyans analizi ile tüm faktörler kontrol altına alınarak yapılan değerlendirmede, biyobelirteçlerin tek başına bu skoru etkilemediği belirlendi. Ancak ortanca değerlerin üzerindeki BMP-2 ve 4 değerleri birlikte mSASSS’yi %3,3 etkilemiştir (p=0,017). Korelasyon analizinde BASDAI ile BMP-4 arasında zayıf, negatif anlamlı bir korelasyon bulundu (p<0,05). Sonuç: AS’de radyografik ilerlemeye katkıda bulunan birçok inflamatuar ve inflamatuar olmayan yol vardır. Hem literatürdeki veriler hem de çalışmamızın sonuçları, progresyona katkıda bulunabilecek belirteçlerin serum seviyelerinden ziyade lokal seviyedeki düzey ve işlevselliğinin önemine işaret etmektedir.
ABSTRACT
Objective: To determine the levels of Dickkopf-1, sclerostin, bone morphogenetic protein (BMP) -2 and 4, interleukin (IL)-17 and 23, which might contribute to the radiographic progression and disease activity in ankylosing spondylitis (AS). Material and Methods: A cross-sectional study was carried out on 238 AS patients and age and sex-matched control group of 102 individuals. The disease activity was assessed through the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). In both groups Dickkopf-1, BMP-2 and 4, sclerostin, IL-17 and 23 levels were measured. Radiographic changes were calculated based on the modified Stokes Ankylosing Spondylitis Spinal Score (mSASSS). Results: Dickkopf-1, sclerostin, IL-17 and 23 levels were significantly higher in AS group compared to the controls. There was no difference regarding serum BMP-4 levels, whereas BMP-2 levels were significantly higher in the control group (p<0.001). Mean mSASSS was 4.4±6.2 and it was determined that biomarkers alone did not affect this score in the evaluation made by taking all factors under control by variance analysis. However, BMP-2 and 4 values together above the median values affected the mSASSS by 3.3% (p=0.017). In the correlation analysis, a weak negative significant correlation was found between BASDAI and BMP-4 (p<0.05). Conclusion: There are many inflammatory and non-inflammatory pathways that contribute to radiographic progression in ankylosing spondylitis. Both the data in the literature and the results of our study point to the importance of the local level and functionality of markers that may contribute to progression rather than serum levels.
REFERENCES
  1. McVeigh CM, Cairns AP. Diagnosis and management of ankylosing spondylitis. BMJ. 2006;333(7568):581-5. [Crossref]  [PubMed]  [PMC] 
  2. Baraliakos X, Listing J, Rudwaleit M, et al. Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Ann Rheum Dis. 2007;66:910-5. [Crossref]  [PubMed]  [PMC] 
  3. Chiowchanwisawakit P, Lambert RG, Conner-Spady B, et al. Focal fat lesions at vertebral corners on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis. Arthritis Rheum. 2011;63:2215-25. [Crossref]  [PubMed] 
  4. Tam LS, Gu J, Yu D. Pathogenesis of ankylosing spondylitis. Nat Rev Rheumatol. 2010;6:399-405. [Crossref]  [PubMed] 
  5. Baum R, Gravallese EM. Bone as a target organ in rheumatic disease: impact on osteoclasts and osteoblasts. Clin Rev Allergy Immunol. 2016;51:1-15. [Crossref]  [PubMed]  [PMC] 
  6. Kwon SR, Lim MJ, Suh CH, et al. Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatol Int. 2012;32:2523-7. [Crossref]  [PubMed] 
  7. Ustun N, Tok F, Kalyoncu U, et al. Sclerostin and Dkk-1 in patients with ankylosing spondylitis. Acta Reumatol Port. 2014;39:146-51. [PubMed] 
  8. Zhang L, Ouyang H, Xie Z, et al. Serum DKK-1 level in the development of ankylosing spondylitis and rheumatic arthritis: a meta-analysis. Exp Mol Med. 2016;48:e228. [Crossref]  [PubMed]  [PMC] 
  9. Wu DH, Hatzopoulos AK. Bone morphogenetic protein signaling in inflammation. Exp Biol Med (Maywood). 2019;244:147-56. [Crossref]  [PubMed]  [PMC] 
  10. Chen HA, Chen CH, Lin YJ, et al. Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. J Rheumatol. 2010;37:2126-32. [Crossref]  [PubMed] 
  11. Bleil J, Sieper J, Maier R, et al. Cartilage in facet joints of patients with ankylosing spondylitis (AS) shows signs of cartilage degeneration rather than chondrocyte hypertrophy: implications for joint remodeling in AS. Arthritis Res Ther. 2015;17:170. [Crossref]  [PubMed]  [PMC] 
  12. Milanez FM, Saad CG, Viana VT, et al. IL-23/Th17 axis is not influenced by TNF-blocking agents in ankylosing spondylitis patients. Arthritis Res Ther. 2016;18:52. [Crossref]  [PubMed]  [PMC] 
  13. Kang YK, Zhang MC. IL-23 promotes osteoclastogenesis in osteoblast-osteoclast co-culture system. Genet Mol Res. 2014;13:4673-9. [Crossref]  [PubMed] 
  14. Yago T, Nanke Y, Kawamoto M, et al. IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther. 2007;9:R96. [Crossref]  [PubMed]  [PMC] 
  15. van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27:361-8. [Crossref]  [PubMed] 
  16. Rudwaleit M, van der Heijde D, Landewé R, et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann Rheum Dis. 2009;68:777-83. [PubMed] 
  17. Garrett S, Jenkinson T, Kennedy LG, et al. A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol. 1994;21:2286-91. [PubMed] 
  18. Creemers MC, Franssen MJ, van't Hof MA, et al. Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann Rheum Dis. 2005;64:127-9. [Crossref]  [PubMed]  [PMC] 
  19. Ramiro S, van Tubergen A, Stolwijk C, et al. Scoring radiographic progression in ankylosing spondylitis: should we use the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) or the Radiographic Ankylosing Spondylitis Spinal Score (RASSS)? Arthritis Res Ther. 2013;15:R14. [Crossref]  [PubMed]  [PMC] 
  20. Heuft-Dorenbosch L, Spoorenberg A, van Tubergen A, et al. Assessment of enthesitis in ankylosing spondylitis. Ann Rheum Dis. 2003;62:127-32. [Crossref]  [PubMed]  [PMC] 
  21. Kroon F, Landewé R, Dougados M, et al. Continuous NSAID use reverts the effects of inflammation on radiographic progression in patients with ankylosing spondylitis. Ann Rheum Dis. 2012;71:1623-9. [Crossref]  [PubMed] 
  22. Cici D, Corrado A, Rotondo C, et al. Wnt signaling and biological therapy in rheumatoid arthritis and spondyloarthritis. Int J Mol Sci. 2019;20:5552. [Crossref]  [PubMed]  [PMC] 
  23. Diarra D, Stolina M, Polzer K, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13:156-63. [Crossref]  [PubMed] 
  24. Cortes A, Maksymowych WP, Wordsworth BP, et al; SPARCC (Spondyloarthritis Research Consortium of Canada); TASC (Australo-Anglo-American Spondyloarthritis Consortium), Learch TJ, Reveille JD, Brown MA, Weisman MH. Association study of genes related to bone formation and resorption and the extent of radiographic change in ankylosing spondylitis. Ann Rheum Dis. 2015;74:1387-93. [Crossref]  [PubMed]  [PMC] 
  25. Appel H, Ruiz-Heiland G, Listing J, et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum. 2009;60:3257-62. [Crossref]  [PubMed] 
  26. Rossini M, Viapiana O, Adami S, et al. Focal bone involvement in inflammatory arthritis: the role of IL17. Rheumatol Int. 2016;36:469-82. [Crossref]  [PubMed] 
  27. Appel H, Maier R, Bleil J, et al. In situ analysis of interleukin-23- and interleukin-12-positive cells in the spine of patients with ankylosing spondylitis. Arthritis Rheum. 2013;65:1522-9. [Crossref]  [PubMed] 
  28. Lories RJ, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest. 2005;115:1571-9. [Crossref]  [PubMed]  [PMC] 
  29. Yang M, Yuan H, Miao M, et al. The osteogenic potential of ligament fibroblasts is greater in ankylosing spondylitis patients than in patients with osteoarthritis. Z Rheumatol. 2015;74:340-5. [Crossref]  [PubMed] 
  30. Briolay A, El Jamal A, Arnolfo P, et al. Enhanced BMP-2/BMP-4 ratio in patients with peripheral spondyloarthritis and in cytokine- and stretch-stimulated mouse chondrocytes. Arthritis Res Ther. 2020;22:234. [Crossref]  [PubMed]  [PMC] 
  31. Biver E, Hardouin P, Caverzasio J. The "bone morphogenic proteins" pathways in bone and joint diseases: translational perspectives from physiopathology to therapeutic targets. Cytokine Growth Factor Rev. 2013;24:69-81. [Crossref]  [PubMed] 
  32. Grcevic D, Jajic Z, Kovacic N, et al. Peripheral blood expression profiles of bone morphogenetic proteins, tumor necrosis factor-superfamily molecules, and transcription factor Runx2 could be used as markers of the form of arthritis, disease activity, and therapeutic responsiveness. J Rheumatol. 2010;37:246-56. [Crossref]  [PubMed] 
  33. Dougados M, Logeart I, Szumski A, et al. Evaluation of whether extremely high enthesitis or Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) scores suggest fibromyalgia and confound the anti-TNF response in early non-radiographic axial spondyloarthritis. Clin Exp Rheumatol. 2017;35 Suppl 105:50-3. [PubMed]